

Co-funded by the Erasmus+ Programme of the European Union

Signature Schemes

Truong Tuan Anh CSE-HCMUT

Outline

- Signature schemes
- RSA signature scheme

Context

• A "conventional" handwritten signature

- Attached to a document
- Specify the person responsible for the document
- Used in everyday situations: writing a letter. Withdrawing money, signing a contract, ...
- Electronic document?
- → Digital Signatures = Signature Schemes
- A method of signing a message stored in electronic form and can be transmitted over a computer network

Digital vs. Conventional Signatures

• Signing a document

- Conventional Signatures: a part of the physical document being signed
- Digital Signatures: not attached physically to the message being signed; There is an algorithm to "bind" the signature to the message

Verification

- Conventional Signatures: compare to authentic signatures; Not a very secure method
- Digital Signatures: can be verified by a public verification algorithm; Prevent the possibility of forgeries

Signature Schemes

- A signature Scheme: consists of two components
 - A signing algorithm
 - A verification algorithm
- Alice signs a message using the private signing algorithm
- Bob verifies the signature using Alice's corresponding public verification algorithm

Signature Schemes

A signature scheme is a five-tuple $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$, where:

- 1. P is a finite set of possible messages
- 2. A is a finite set of possible signatures
- 3. X, the keyspace, is a finite set of possible keys
- 4. For each $K \in \mathcal{K}$, there is
 - a signing algorithm $\mathbf{sig}_K \in S$ and
 - a corresponding verification algorithm $\mathbf{ver}_K \in \mathcal{V}$.

Signature Schemes (cont.)

Each

$$\mathbf{sig}_{K} : \mathcal{P} \to \mathcal{A} \text{ and}$$
$$\mathbf{ver}_{K} : \mathcal{P} \times \mathcal{A} \to \{true, false\}$$

are functions such that the following equation is satisfied: for every message $x \in \mathcal{P}$ and for every signature $y \in \mathcal{A}$:

$$\mathbf{ver}_K(x,y) = egin{cases} true & ext{if } y = \mathbf{sig}_K(x) \ false & ext{if } y \neq \mathbf{sig}_K(x). \end{cases}$$

A pair (x, y) with $x \in \mathcal{P}$ and $y \in \mathcal{A}$ is called a <u>signed message</u>.

Signature Schemes: Notes

- The functions sig_K and ver_K should be polynomial-time functions
- sig_K is the private function and ver_K is the public function
- It should be computationally infeasible for anyone than Alice to compute a signature y such that ver_K(x,y) = true
- If Oscar can compute y such that ver_K(x,y) = true, then y is a forgery

Signature Schemes: An Example

- RSA cryptosystem can be used to provide digital signatures
- \rightarrow RSA signature scheme
- Alice signs a message using the RSA decryption rule d_K = sig_K
- Anyone can verify the signature using the RSA encryption rule e_K = ver_K
- Anyone can forge Alice's RSA signature by randomly choosing y and computing if x = e_κ(y)

Signature Schemes: An Example

RSA Signature Scheme

Let n = pq, where p and q are primes. Let $\mathcal{P} = \mathcal{A} = \mathbb{Z}_n$, and define

 $\mathcal{K} = \{(n, p, q, a, b) : n = pq, p, q \text{ prime}, ab \equiv 1 \pmod{\phi(n)}\}.$

The values n and b are the public key, and the values p, q, a are the private key. For K = (n, p, q, a, b), define

$$\mathbf{sig}_K(x) = x^a \bmod n$$

and

$$\mathbf{ver}_K(x,y) = \mathrm{true} \Leftrightarrow x \equiv y^b \pmod{n}$$

 $(x, y \in \mathbb{Z}_n).$

RSA Signature Scheme: How it works

- Alice wishes to send an encrypted, signed message to Bob (given the plaintext is x)
 - 1. Alice computes her signature $y = sig_{Alice}(x)$
 - 2. Alice encrypts both x and y using e_{Bob} , then $z = e_{Bob}(x, y)$
 - 3. Alice sends z to Bob
 - 4. Bob receives *z*
 - 5. Bob decrypts *z* using \mathbf{d}_{Bob} to get *x*, *y*
 - 6. Bob uses Alice's <u>public verification function</u> to check that $ver_{Alice}(x, y) = true$

RSA Signature Scheme: How it works

- Alice wishes to send an encrypted, signed message to Bob (given the plaintext is x)
 - 1. Alice encrypts both *x* using e_{Bob} , then $z = e_{Bob}(x)$
 - 2. Alice computes her signature $y = sig_{Alice}(z)$
 - 3. Alice sends (z, y) to Bob
 - 4. Bob receives (z, y)
 - 5. Bob decrypts *z* using \mathbf{d}_{Bob} to get *x*
 - 6. Bob uses Alice's <u>public verification function</u> to check that $ver_{Alice}(z, y) = true$
- What is the problem?

Signature Schemes: In Reality

