

Co-funded by the Erasmus+ Programme of the European Union

HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY

Cryptographic Hash Functions

Truong Tuan Anh CSE-HCMUT

Outline

- Data integrity
- Hash functions
- ...

Data Integrity

- Data usually transferred over insecure channel
- Many factors affecting the data
- Example: Alice sends to Bob a message. Bob needs to know if the message has been changed over the channel?
- \rightarrow Need to assure data integrity

Hash Functions

- Provide assurance of data integrity
- Compute a short "fingerprint" of some data
 - If the data is changed, the fingerprint will no longer valid
 - Check the data integrity by re-computing the fingerprint and verify that the fingerprint has not changed
- The fingerprint = message digest

Hash Functions

- Let x be some data, its message digest is h(x) where h is a hash function
- The message digest should be short, commonly 160 bits
- Keyed and unkeyed hash functions
 - Keyed hash functions are often used as message authentication codes (MACs)

Hash Function: Key and Unkeyed

Example: Alice wants to send to Bob message x

- Unkeyed hash function:
 - Alice computes y = h(x), then sends x over the channel and stores y in a secure channel
 - Bob receives x and reads y and verifies if y = h(x), if yes,
 Bob is confident that x is originated from Alice
- Keyed hash function: Alice and Bob share a secret key K which determines function h_K:
 - Compute $y = h_{\mathcal{K}}(x)$, then send (x, y) over the channel
 - Bob receives (x, y) and verifies if $y = h_K(x)$, if yes, Bob is confident that neither x or y was modified by attackers

Hash Family

A *hash family* is a four-tuple $(\mathfrak{X}, \mathfrak{Y}, \mathfrak{K}, \mathfrak{H})$, where the following conditions are satisfied:

- 1. X is a set of possible messages
- 2. Y is a finite set of possible message digests or authentication tags
- 3. K, the keyspace, is a finite set of possible keys
- 4. For each $K \in \mathcal{K}$, there is a hash function $h_K \in \mathcal{H}$. Each $h_K : \mathcal{X} \to \mathcal{Y}$.

A pair $(x, y) \in \mathfrak{X} \times \mathfrak{Y}$ is said to be a *valid pair* under the key K if $h_K(x) = y$.

Hash Family

Unkeyed hash function:

 Also a hash family in which there is only one possible key

 All we want is to prevent the construction of certain types of valid pairs by an adversary

Security of Hash Function

- It is desirable that the only way to produce a valid pair (x, y) is to first choose x and then compute y = h(x) by applying the function h to x
- Other security requirement depending on the particular applications
- Usually, a hash function is considered to be secured if the following problems are <u>difficult to solve</u>

Hash Function: Security Requirement

Preimage

Instance:	A hash function $h : \mathfrak{X} \to \mathcal{Y}$ and an element $y \in \mathcal{Y}$.
Find:	$x \in \mathfrak{X}$ such that $h(x) = y$.

A hash function for which **Preimage** cannot be efficiently solved is often said to be *one-way* or *preimage resistant*.

Hash Function: Security Requirement

Second Preimage

Instance:	A hash function $h : \mathcal{X} \to \mathcal{Y}$ and an element $x \in \mathcal{X}$.
Find:	$x' \in \mathfrak{X}$ such that $x' \neq x$ and $h(x') = h(x)$.

A hash function for which **Second Preimage** cannot be efficiently solved is often said to be *second preimage resistant*.

Hash Function: Security Requirement

Collision

Instance:	A hash function $h: \mathfrak{X} \to \mathcal{Y}$.
Find:	$x, x' \in \mathcal{X}$ such that $x' \neq x$ and $h(x') = h(x)$.

A hash function for which **Collision** cannot be efficiently solved is often said to be *collision resistant*.

Presentations

- The Random Oracle Model and Algorithms (Sections 4.2.1 and 4.2.2)
- Cryptosystems RC2 and RC5
- Hash functions MD5 and RIPEMD