

Co-funded by the Erasmus+ Programme of the European Union

Public-key Cryptography

Truong Tuan Anh CSE-HCMUT

Outline

- Public-key cryptosystem
- Some fundamental theories
- RSA
- ...

Classification

Cryptography: Classical Model

- Secret, common key K
- e_k and d_k for each key K:
 - d_k is either the same as e_k or easily derived from e_k
 - **Disclose** d_k or e_k will make the system insecure
- \rightarrow Symmetric-key Cryptosystem
- Require prior communication of the key K (using a secure channel)
- \rightarrow Difficult to achieve in practice
- Public-key cryptosystem

Public-key Cryptosystem

- Was put forward by Diffie and Hellman in 1976
- The most important cryptosystems: RSA and ElGamal
- Computationally infeasible to determine d_k given e_k
 - e_k is public key
 - Alice sends to Bob an encrypted message using e_k of Bob
 - Bob is the only one who can decrypt the message using his d_k (private key)
- \rightarrow Never provide unconditional security (why?)

Public-key Cryptosystem (cont.)

- Encryption function is easy to compute
- The inverse function (i.e., the decryption function) should be hard to compute (except for Bob)
- \rightarrow one-way function
- Example: suppose *n* is the product of two large primes *p* and *q*; *b* is a positive integer

$$f:\mathbb{Z}_n o\mathbb{Z}_n$$

$$f(x) = x^b \bmod n.$$

Trapdoor One-way Functions

- From Bob's view, he does not want e_k to be oneway
- \rightarrow provide Bob a *trapdoor*: which consists of secret information for the inversion of e_k
- Trapdoor one-way function: a one-way function but it is easy to invert with the knowledge of a certain trapdoor

$$f: \mathbb{Z}_n o \mathbb{Z}_n$$

 $f(x) = x^b \mod n.$

$$f^{-1}:f(x) = x^a \bmod n$$

Trapdoor One-way Functions (cont.)

- Usually, we need to specify a <u>family of</u> <u>trapdoor one-way functions</u> F
- A function f is chosen from F randomly and used as the *public encryption function*
- Its inverse function is the *private decryption* function
- → Similar to the random key in the symmetrickey cryptosystems

Some Fundamental Theories

Recall: Multiplicative Inverse

Suppose $a \in \mathbb{Z}_m$. The multiplicative inverse of a modulo m, denoted $a^{-1} \mod m$, is an element $a' \in \mathbb{Z}_m$ such that $aa' \equiv a'a \equiv 1 \pmod{m}$.

If m is fixed, we sometimes write a^{-1} for $a^{-1} \mod m$.

Examples: in Z₂₆
 3⁻¹ = ?
 17⁻¹= ?

Relatively Prime

 $b \in \mathbb{Z}_n$ has a multiplicative inverse if and only if gcd(b, n) = 1

the number of positive integers less than n and relatively prime to n is $\phi(n)$

• x and y are relatively prime iff gcd(x,y) = 1

The set of residues modulo *n* that are relatively prime to *n* is denoted \mathbb{Z}_n^* Any element in \mathbb{Z}_n^* have a multiplicative inverse (which is also in \mathbb{Z}_n^*)

Compute gcd(a,b)

EUCLIDEAN ALGORITHM(a, b)

$$r_{0} \leftarrow a$$

$$r_{1} \leftarrow b$$

$$m \leftarrow 1$$
while $r_{m} \neq 0$

$$\begin{cases} q_{m} \leftarrow \lfloor \frac{r_{m-1}}{r_{m}} \rfloor \\ r_{m+1} \leftarrow r_{m-1} - q_{m}r_{m} \\ m \leftarrow m + 1 \end{cases}$$

$$m \leftarrow m - 1$$
return $(q_{1}, \dots, q_{m}; r_{m})$
comment: $r_{m} = \gcd(a, b)$

Compute *b*⁻¹ modulo *a*

MULTIPLICATIVE INVERSE(a, b)

 $\begin{array}{ll} a_0 \leftarrow a & \text{while } r > 0 \\ b_0 \leftarrow b & \\ t_0 \leftarrow 0 & \\ t \leftarrow 1 & \\ q \leftarrow \lfloor \frac{a_0}{b_0} \rfloor & \text{do} \end{array} \begin{cases} temp \leftarrow (t_0 - qt) \mod a \\ t_0 \leftarrow t & \\ t \leftarrow temp & \\ a_0 \leftarrow b_0 & \\ b_0 \leftarrow r & \\ q \leftarrow \lfloor \frac{a_0}{b_0} \rfloor \\ r \leftarrow a_0 - qb_0 & \\ \end{array}$

if $b_0 \neq 1$ then b has no inverse modulo a else return (t)

Chinese Remainder Theorem

Suppose m_1, \ldots, m_r are pairwise relatively prime positive integers, and suppose a_1, \ldots, a_r are integers.

Then the system of r congruences $x \equiv a_i \pmod{m_i}$ $(1 \leq i \leq r)$ has a <u>unique solution modulo</u> $M = m_1 \times \cdots \times m_r$.

$$x = \sum_{i=1}^r a_i M_i y_i \mod M,$$

where $M_i = M/m_i$ and $y_i = M_i^{-1} \mod m_i$, for $1 \le i \le r$.

Example

- Suppose r = 3, in $m_1 = 7$, $m_2 = 11$, $m_3 = 13$
- $\rightarrow M = 1001 \text{ and } M_1 = 143, M_2 = 91, M_3 = 77$

•
$$y_1 = ?, y_2 = ?, y_3 = ?$$

•
$$y_1 = 5, y_2 = 4, y_3 = 12$$

The Function:
$$\chi^{-1}: \mathbb{Z}_7 \times \mathbb{Z}_{11} \times \mathbb{Z}_{13} \to \mathbb{Z}_{1001}$$

is

$$\chi^{-1}(a_1, a_2, a_3) = (715a_1 + 364a_2 + 924a_3) \mod 1001$$

Example (cont.)

if $x \equiv 5 \pmod{7}$, $x \equiv 3 \pmod{11}$ and $x \equiv 10 \pmod{13}$

Then we recompute *x* by:

$$x = (715 \times 5 + 364 \times 3 + 924 \times 10) \mod 1001$$

= 13907 mod 1001
= 894.