Co-funded by the

Erasmus+ Programme
of the European Union

Public-key Cryptography

Truong Tuan Anh CSE-HCMUT

Outline

- Public-key cryptosystem
- Some fundamental theories
- RSA

Classification

Cryptography: Classical Model

- Secret, common key K
- e_{k} and d_{k} for each key K:
- d_{k} is either the same as e_{k} or easily derived from e_{k}
- Disclose d_{k} or e_{k} will make the system insecure
\rightarrow Symmetric-key Cryptosystem
- Require prior communication of the key K (using a secure channel)
\rightarrow Difficult to achieve in practice
- Public-key cryptosystem

Public-key Cryptosystem

- Was put forward by Diffie and Hellman in 1976
- The most important cryptosystems: RSA and ElGamal
- Computationally infeasible to determine d_{k} given e_{k}
- e_{k} is public key
- Alice sends to Bob an encrypted message using e_{k} of Bob
- Bob is the only one who can decrypt the message using his d_{k} (private key)
\rightarrow Never provide unconditional security (why?)

Public-key Cryptosystem (cont.)

- Encryption function is easy to compute
- The inverse function (i.e., the decryption function) should be hard to compute (except for Bob)
\rightarrow one-way function
- Example: suppose n is the product of two large primes p and $q ; b$ is a positive integer

$$
f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}
$$

$$
f(x)=x^{b} \bmod n .
$$

Trapdoor One-way Functions

- From Bob's view, he does not want e_{k} to be oneway
\rightarrow provide Bob a trapdoor. which consists of secret information for the inversion of e_{k}
- Trapdoor one-way function: a one-way function but it is easy to invert with the knowledge of a certain trapdoor

$$
\begin{gathered}
f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n} \\
f(x)=x^{b} \bmod n .
\end{gathered}
$$

$$
f^{-1}: f(x)=x^{a} \bmod n
$$

Trapdoor One-way Functions (cont.)

- Usually, we need to specify a family of trapdoor one-way functions F
- A function f is chosen from F randomly and used as the public encryption function
- Its inverse function is the private decryption function
\rightarrow Similar to the random key in the symmetrickey cryptosystems

Some Fundamental Theories

Recall: Multiplicative Inverse

Suppose $a \in \mathbb{Z}_{m}$. The multiplicative inverse of a modulo m. denoted $a^{-1} \bmod m$, is an element $a^{\prime} \in \mathbb{Z}_{m}$ such that

$$
a a^{\prime} \equiv a^{\prime} a \equiv 1(\bmod m)
$$

If m is fixed, we sometimes write a^{-1} for $a^{-1} \bmod m$.

- Examples: in Z_{26}

$$
\begin{aligned}
3^{-1} & =? \\
17^{-1} & =?
\end{aligned}
$$

Relatively Prime

$b \in \mathbb{Z}_{n}$ has a multiplicative inverse if and only if $\operatorname{gcd}(b, n)=1$
the number of positive integers less than n and relatively prime to n is $\phi(n)$

- x and y are relatively prime iff $\operatorname{gcd}(x, y)=1$

The set of residues modulo n that are relatively prime to n is denoted $\mathbb{Z}_{n}{ }^{*}$ Any element in $\mathbb{Z}_{n}{ }^{*}$ have a multiplicative inverse (which is also in $\mathbb{Z}_{n}{ }^{*}$)

Compute gcd(a,b)

EUCLIDEAN ALGORITHM (a, b)

$$
\begin{aligned}
& r_{0} \leftarrow a \\
& r_{1} \leftarrow b \\
& m \leftarrow 1
\end{aligned}
$$

while $r_{m} \neq 0$
do $\left\{\begin{array}{l}q_{m} \leftarrow\left\lfloor\frac{r_{m-1}}{r_{m}}\right\rfloor \\ r_{m+1} \leftarrow r_{m-1}-q_{m} r_{m} \\ m \leftarrow m+1\end{array}\right.$
$m \leftarrow m-1$
return $\left(q_{1}, \ldots, q_{m} ; r_{m}\right)$
comment: $r_{m}=\operatorname{gcd}(a, b)$

Compute b^{-1} modulo a

Multiplicative Inverse (a, b)
$a_{0} \leftarrow a$
$b_{0} \leftarrow b$
$t_{0} \leftarrow 0$
$t \leftarrow 1$
$q \leftarrow\left\lfloor\frac{a_{0}}{b_{0}}\right\rfloor$
$r \leftarrow a_{0}-q b_{0}$
while $r>0$

$$
\text { do }\left\{\begin{array}{l}
t e m p \leftarrow\left(t_{0}-q t\right) \bmod a \\
t_{0} \leftarrow t \\
t \leftarrow t e m p \\
a_{0} \leftarrow b_{0} \\
b_{0} \leftarrow r \\
q \leftarrow\left\lfloor\frac{a_{0}}{b_{0}}\right\rfloor \\
r \leftarrow a_{0}-q b_{0}
\end{array}\right.
$$

if $b_{0} \neq 1$
then b has no inverse modulo a else return (t)

Chinese Remainder Theorem

Suppose m_{1}, \ldots, m_{r} are pairwise relatively prime positive integers, and suppose a_{1}, \ldots, a_{r} are integers.

Then the system of r congruences $x \equiv a_{i}\left(\bmod m_{i}\right)(1 \leq i \leq r)$ has a unique solution modulo $M=m_{1} \times \cdots \times m_{r}$

$$
x=\sum_{i=1}^{r} a_{i} M_{i} y_{i} \bmod M
$$

where $M_{i}=M / m_{i}$ and $y_{i}=M_{i}^{-1} \bmod m_{i}$, for $1 \leq i \leq r$.

Example

- Suppose $r=3$, in $m_{1}=7, m_{2}=11, m_{3}=13$
$\rightarrow M=1001$ and $M_{1}=143, M_{2}=91, M_{3}=77$
- $y_{1}=$?, $y_{2}=$?, $y_{3}=$?
- $y_{1}=5, y_{2}=4, y_{3}=12$

The Function: $\quad \chi^{-1}: \mathbb{Z}_{7} \times \mathbb{Z}_{11} \times \mathbb{Z}_{13} \rightarrow \mathbb{Z}_{\mathbf{1 0 0 1}}$ is
$\chi^{-1}\left(a_{1}, a_{2}, a_{3}\right)=\left(715 a_{1}+364 a_{2}+924 a_{3}\right) \bmod 1001$

Example (cont.)

$$
\text { if } x \equiv 5(\bmod 7), x \equiv 3(\bmod 11) \text { and } x \equiv 10(\bmod 13)
$$

Then we recompute x by:

$$
\begin{aligned}
x & =(715 \times 5+364 \times 3+924 \times 10) \bmod 1001 \\
& =13907 \bmod 1001 \\
& =894
\end{aligned}
$$

