

Co-funded by the Erasmus+ Programme of the European Union

HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY

Cryptosystems

Truong Tuan Anh CSE-HCMUT anhtt@hcmut.edu.vn

In This Lecture

- Cryptography
- Cryptosystem: Definition
- Simple Cryptosystem
 - Shift cipher
 - Substitution cipher
 - Affine cipher
- Cryptanalysis

Perfect Model

• Alice and Bob want to secretly communicate to each other

Real Model

• Alice and Bob want to secretly communicate to each other

- 1. Many parties Alice, Bob, Oscar, etc...
- 2. Insecure communication line
- 3. Send messages inconfidentially

The Fundamental Objective

- Alice and Bob communicate over an insecure channel
 - Telephone line, computer network, etc...

\rightarrow **Objective**:

An adversary, called Oscar, cannot understand the conversation

Cryptography

 Cryptography is the science of using mathematics to encrypt and decrypt data

 Cryptography enables people to store sensitive information/data or transmit it across insecure networks so that no one can read it except the intended recipient

Basic Notations

- Plaintext: the information Alice wants to send to Bob and <u>vice versa</u>
 - The structure is completely arbitrary: English text, numerical data, ...
- Ciphertext: encrypted plaintext using a predetermined key (encryption key)
- Decryption key: for decrypting ciphertext to plaintext

Basic Notations (cont.)

• Encryption rule (e):

- Input: plaintext and encryption key
- Output: corresponding ciphertext

• **Decryption rule** (*d*):

- Input: ciphertext and decryption key
- Output: corresponding plaintext

Assumptions

• **Objective**:

An adversary, called Oscar, cannot understand the message x

- Assumptions:
 - Oscar <u>knows</u> the rules e, d
 - Oscar <u>knows</u> the message space/structure
 - Oscar does not know keys used
- \rightarrow Oscar wants to discover the keys

Definition

A Cryptosysytem/cipher is a five-tuple

 $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$

where

- \mathcal{P} is a finite set of possible plaintexts;
- C is a finite set of possible ciphertexts;
- *K*, the *keyspace*, is a finite set of possible keys;

Cryptosystem: An Example

14

Cryptosystem: An Example (cont.)

- Alice and Bob choose the same random key K
- Alice wants to send message $x = x_1 x_2 \dots x_n$
- Alice computes $y_i = e_K(x_i)$
- Alice sends $y = y_1 y_2 \dots y_n$
- Bob receives y
- Bob decrypts $x_i = d_K(y_i)$
- Bob obtains the plaintext $x = x_1 x_2 \dots x_n$

Note: Each encryption rule *e*_{*k*} must be **one-to-one** function **Why?**

Classification

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

• Modular arithmetic:

 $x = y \mod m$ iff $y = m^*k + x$ and $0 \le x \le m-1$ x, y, m, k are integer and x is non-negative

- Examples:
 - 155 *mod* 8 = ?

• Modular arithmetic:

 $x = y \mod m$ iff $y = m^*k + x$ and $0 \le x \le m-1$ x, y, m, k are integer and x is non-negative

- Examples:
 - 155 *mod* 8 = 3 155 = 19*8 + 3

• Modular arithmetic:

 $x = y \mod m$ iff $y = m^*k + x$ and $0 \le x \le m-1$ x, y, m, k are integer and x is non-negative

• Examples:

-134 mod 23 = ?

• Modular arithmetic:

 $x = y \mod m$ iff $y = m^*k + x$ and $0 \le x \le m-1$ x, y, m, k are integer and x is non-negative

- Examples:
 - $-134 \mod 23 = 4$ -134 = (-6) * 23 + 4

22

Arithmetic Modulo *m* in Z_m

- *Z*_m is the set {0, 1, ..., m-1}
- Operations in Z_m : + and x
 - Work like real addition and multiplication, except the results are reduced to modulo m
- Examples:
 - 13 x 15 = 13 in Z_{26} 21 + 134 = ? in Z_{18}

The Shift Cipher: Definition

A Shift cipher is a five-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ where • $\mathcal{P} = \mathcal{C} = \mathcal{K} = Z_{26};$ • For each $0 \le K \le 25$: $e_{\mathcal{K}}(x) = (x + \mathcal{K}) \mod 26$ and $d_{\mathcal{K}}(y) = (y - \mathcal{K}) \mod 26$

$$(x, y \in Z_{26})$$

- Z_{26} : 26 English letters
- When K = 3, it is the Caesar Cipher and used by Julius Caesar

The Shift Cipher: Example

Α												
0	1	2	3	4	5	6	7	8	9	10	11	12

Ν	0	Р	Q	R	S	Τ	U	V	W	X	Y	Ζ
13	14	15	16	17	18	19	20	21	22	23	24	25

The Shift Cipher: Example (cont.)

- Choose *K* = 13
- The plaintext is weareatclass
- \rightarrow Encrypt it using the Shift Cipher?
- Step 1: convert plaintext to integers
 w e a r e a t c l a s s
 22 4 0 17 4 0 19 2 11 0 18 18

The Shift Cipher: Example (cont.)

- Step 3: convert to characters
 9 17 13 4 17 13 6 15 24 13 5 5
 j r n e r n g p y n f f

→ The ciphertext: *jrnerngpynff*

How to decrypt the ciphertext?

The Shift Cipher: Example (cont.)

- Choose *K* = 11
- The ciphertext is hphtwwxppelextoytrse
- \rightarrow Decrypt it using the Shift Cipher?

The Shift Cipher: Review

Not secure: keyspace is 26

- Exhaustive key search is feasible

• Example: *jbcrclqrwcrvnbjenbwrwn*

- Key 0: *jbcrclqrwcrvnbjenbwrwn*
- Key 1: *iabqbkpqvbqumaidmavqvm*
- Key 9: astitchintimesavesnine
- \rightarrow plaintext: a stitch in time saves nine

• To be secure

- The key space should be very large

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

The Substitution Cipher: Definition

A Substitution cipher is a five-tuple

 $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$

where

• $\mathcal{P} = \mathcal{C} = Z_{26};$

 K consists of all possible permutations of the 26 symbols 0, 1, ...,25

• For each permutation $\pi \in \mathcal{K}$:

$$e_{\pi}(x)=\pi(x)$$
 and $d_{\pi}(y)=\pi^{-1}(y)$

($x, y \in Z_{26}$ and π^{-1} is the inverse pemutation to π)

The Substitution Cipher: Example

Consider the following permutation

Plaintext: attack at dawn
Ciphertext: waawoq wa vwmk

How to decrypt the ciphertext?

The Substitution Cipher: Example (cont.)

• Consider the following permutation

Plaintext: we are studying cryptography
Ciphertext: ?

The Substitution Cipher: Review

- 26! ~ 4*10²⁸
- \rightarrow Large enough
- An exhaustive key search is infeasible

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

Why Affine?

- Affine functions: $e(x) = (ax + b) \mod 26$ $a, b \in Z_{26}$
- Suppose e(x) = (4x + 7) mod 26
 e(3) = ?
 e(10) = ?
 e(16) = ?

Why Affine?

- Affine functions: $e(x) = (ax + b) \mod 26$ $a, b \in Z_{26}$
- Suppose e(x) = (4x + 7) mod 26
 e(3) = 19
 e(10) = 21
 e(16) = 19

The Affine Cipher: Condition

• The affine functions have unique solution for every *x* iff

gcd(a,26) = 1 *gcd*: the greatest common divisor

• Examples:

gcd(4,26) = 2 $\rightarrow e(x)$ is not a valid encryption function gcd(7,26) = 1 $\rightarrow e(x)$ is a valid encryption function

Congruence

a, b are integer; *m* is a positive integer
 a ≡ *b* (mod m), called a congruence, if (*a-b*) divides *m*

- <u>In other words:</u>

 a = *b* (mod m) iff a mod m = b mod m
- Example: 105 ≡ 1 (mod 26)
 ? ≡ 8 (mod 18)

Multiplicative Inverse

- Suppose $a \in Z_m$
- The multiplicative inverse of *a* module *m*:
 - denoted a⁻¹ mod m
 - is an element $a' \in Z_m$ such that:

 $aa' \equiv a'a \equiv 1 \pmod{m}$

if *m* is fixed, we sometimes write a^{-1} for a^{-1} mod *m*

40

The Affine Cipher: Definition

An Affine cipher is a five-tuple

 $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$

where

•
$$\mathcal{P} = \mathcal{C} = Z_{26};$$

• $\mathcal{K} = \{(a, b) \in Z_{26} \times Z_{26} : gcd(a, 26) = 1\}$
• For each $\mathcal{K} = (a, b) \in \mathcal{K}:$
 $e_{\mathcal{K}}(x) = (ax + b) \mod 26$ and $d_{\mathcal{K}}(y) = a^{-1}(y - b) \mod 26$
 $(x, y \in Z_{26})$

The Affine Cipher: Example

• Suppose K = (9, 5) in Z_{26} $e_k(x) = 9x + 5$

Calculate the decryption rule: 9⁻¹ = ?

Now, let encrypt *x* = *the weather is good*

Step 1: convert to integers 19 7 4 22 4 0 19 7 4 17 8 18 6 14 14 3

The Affine Cipher: Example

• Suppose K = (9, 5) in Z_{26} $e_k(x) = 9x + 5$

Calculate the decryption rule: $9^{-1} = 3$ $\rightarrow d_k(y) = 3(y - 5) = 3y - 15$

- Now, let encrypt the plaintext *x* = *the weather is good*
- Step 1: convert to integers 19 7 4 22 4 0 19 7 4 17 8 18 6 14 14 3

The Affine Cipher: Example

- Step 2: encrypt integers using e_k(x)
 19 7 4 22 4 0 19 7 4 17 8 18 6 14 14 3
 20 16 15 21 15 5 20 16 15 2 25 11 7 1 1 6
- Step 3: convert to string
 u q p v p f u q p c z l h b b g
- → Ciphertext: uqpvpfuqpczlhbbg
- Now, let <u>decrypt</u> the ciphertext <u>axg</u> with the key K = (7,3) in Z₂₆?

The Affine Cipher: Review

• Key space?

- gcd(a,26) = 1, so a must be 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25
- *b* can be any element in Z_{26}
- \rightarrow too small to be secure

The Vigenère Cipher

The Vigenère Cipher: Definition

Let *m* be a positive integer. Define $\mathcal{P} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_{26})^m$. For a key $K = (k_1, k_2, \dots, k_m)$, we define

$$e_K(x_1, x_2, \dots, x_m) = (x_1 + k_1, x_2 + k_2, \dots, x_m + k_m)$$

and

 $d_K(y_1, y_2, \ldots, y_m) = (y_1 - k_1, y_2 - k_2, \ldots, y_m - k_m),$ where all operations are performed in \mathbb{Z}_{26} .

Note: all the operations must be reduced to modulo 26

The Vigenère Cipher: Example

- Suppose *m* = 6 and the keyword is *cipher*.
 So, the key *K* = (2, 8, 15, 7, 4, 17)
- The plaintext is *x* = *itisveryhottoday*
- How to encrypt it using the Vigenère Cipher?
- Step 1: convert the plaintext to integers
 8 19 8 18 21 4 17 24 7 14 19 19 14 3 0 24

The Vigenère Cipher: Example

Step 2: add the keyword then modulo 26
8 19 8 18 21 4 17 24 7 14 19 19 14 3 0 24
2 8 15 7 4 17 2 8 15 7 4 17 2 8 15 7
10 1 23 25 25 21 19 6 22 21 23 10 16 11 15 5

Step 3: convert integers to string
k b x z z v t g w v x k q l p f

→ Ciphertext: *kbxzzvtgwvxkqlpf*

The Vigenère Cipher: Example

- Suppose *m* = 6 and the keyword is *cipher*. So, the key *K* = (2, 8, 15, 7, 4, 17)
- The <u>ciphertext</u> is y =

vpxzgiaxivwpubttmjpwizitwzt

- Let decrypt it using the Vigenère Cipher?
- The plaintext is x =

thiscryptosystemisnotsecure

The Vigenère Cipher: Review

• Key space?

- 26^m where *m* is the length of the keyword
- Exhaustive key search by hand is infeasible
- An alphabetic character can be mapped to one of *m* possible alphabetic characters
- → polyalphabetic cryptosystem

The Hill Cipher

Basic Linear Algebra

• Matrix A:
$$I * m$$
 $\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$

- Matrix product: $AB = (c_{i,k})$
 - $A = (a_{i,j})$ is an l^*m matrix and $B = (a_{j,k})$ is an m^*n matrix

• I*n matrix
$$C_{i,k} = \sum_{j=1}^{m} a_{i,j} b_{j,k}$$

- (AB)C = A(BC) but not AB = BA
- Identity matrix I_m : m^*m matrix with 1's on the main diagonal and 0's elsewhere $\begin{pmatrix} 1 & 0 \end{pmatrix}$

Basic Linear Algebra

Inverse matrix of A: m * m

- A^{-1} such that $AA^{-1} = A^{-1}A = I_m$
- Not all matrices have inverse but if it is exists, it is unique
- \rightarrow when a matrix has inverse?
- **Determinant (***det***)** of $A = (a_{i,j})$, an m^*m matrix
 - Define A_{ij} to be the matrix obtained from A by deleting the row *i*th and the column *j*th

• m > 1: choose *i* is any fixed integer between 1 to m

$$\det A = \sum_{j=1}^{m} (-1)^{i+j} a_{i,j} \det A_{ij}$$

Basic Linear Algebra

- $A = (a_{i,j})$: 2*2 matrix
 - det $A = a_{1,1}a_{2,2} a_{1,2}a_{2,1}$
- $A = (a_{i,j})$: 3*3 matrix • det $A = a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2} - (a_{1,1}a_{2,3}a_{3,2} + a_{1,2}a_{2,1}a_{3,3} + a_{1,3}a_{2,2}a_{3,1})$
- A simple case: suppose $A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$ and A has inverse then

$$A^{-1} = (\det A)^{-1} \begin{pmatrix} a_{2,2} & -a_{1,2} \\ -a_{2,1} & a_{1,1} \end{pmatrix}$$

Important Condition

• When a matrix has inverse?

A matrix A has inverse iff its det is non-zero

A matrix A has inverse modulo 26 iff gcd(det A, 26) = 1

The Hill Cipher: Definition

Let $m \geq 2$ be an integer. Let $\mathfrak{P} = \mathfrak{C} = (\mathbb{Z}_{26})^m$ and let

 $\mathcal{K} = \{m \times m \text{ invertible matrices over } \mathbb{Z}_{26}\}.$

For a key K, we define

$$e_K(x) = xK$$

and

$$d_K(y) = yK^{-1},$$

where all operations are performed in \mathbb{Z}_{26} .

Note: all operation must be reduced to modulo 26

• Suppose the key
$$K = \begin{bmatrix} 13 & 9 \\ 6 & 8 \end{bmatrix}$$

- The plaintext is *x* = *good*
- How to encrypt it using the Hill Cipher?
- Encrypt is ok but not for decryption!!!

• Suppose the key
$$K = \begin{pmatrix} 11 & 8 \\ 12 & 9 \end{pmatrix}$$

- The plaintext is *x* = *good*
- How to encrypt it using the Hill Cipher?
- Encrypt and decrypt are ok!
- Step 1: convert to integers
 g o o d
 6 14 14 3

- Step 2: Encrypt each block of two integers
 - $\begin{array}{ccc} \mathbf{g} & \mathbf{0} \\ \mathbf{6} & \mathbf{14} \end{array} \quad \begin{pmatrix} \mathbf{6} & \mathbf{14} \end{pmatrix} \begin{pmatrix} \mathbf{11} & \mathbf{8} \\ \mathbf{12} & \mathbf{9} \end{pmatrix} = \begin{pmatrix} \mathbf{66} + \mathbf{168}, \ \mathbf{48} + \mathbf{126} \end{pmatrix} = \begin{pmatrix} \mathbf{0}, \mathbf{18} \end{pmatrix}$

o d
14 3
$$(14 \ 3) \begin{pmatrix} 11 \ 8 \\ 12 \ 9 \end{pmatrix} = (154+36, 112+27) = (8,9)$$

- Step 3: convert each two-integer block to characters
 - The ciphertext is y = asij

How to decrypt?

- Compute K⁻¹
 - $det K = (11*9 12*8) \mod 26 = 3$

• Using

$$A^{-1} = (\det A)^{-1} \begin{pmatrix} a_{2,2} & -a_{1,2} \\ -a_{2,1} & a_{1,1} \end{pmatrix}$$

$$K^{-1} = (3)^{-1} \begin{pmatrix} 9 & -8 \\ -12 & 11 \end{pmatrix} = (9) \begin{pmatrix} 9 & -8 \\ -12 & 11 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 22 & 21 \end{pmatrix}$$

How to decrypt?

• Decrypt each two-integer block of the ciphertext *y* = *asij*

a s
0 18
$$\begin{pmatrix} 0 & 18 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 22 & 21 \end{pmatrix} = \begin{pmatrix} 0+396, 0+378 \end{pmatrix} = \begin{pmatrix} 6,14 \end{pmatrix}$$

i j
8 9 $\begin{pmatrix} 8 & 9 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 22 & 21 \end{pmatrix} = \begin{pmatrix} 24+198, 48+189 \end{pmatrix} = \begin{pmatrix} 14,3 \end{pmatrix}$

• Plaintext x = *good*

The Hill Cipher: Example (cont.)

- Suppose the key $K = \begin{bmatrix} 11 & 8 \\ 12 & 9 \end{bmatrix}$
- The plaintext is *x* = *hello*
- Let encrypt it using the Hill Cipher???

• Suppose the key
$$K = \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix}$$

- The ciphertext is *y* = *delw*
- Let decrypt it using the Hill Cipher???

The Hill Cipher: Review

Key space?
There are 26ⁿ matrices of dimension n x n

• $\log_2(26^{n^2})$ is the upper bound on the key size

What else?

The permutation cipher andThe stream ciphers

Cryptanalysis

General Assumption

- Kerckhoffs' Principle: The opponent, namely Oscar, knows the cryptosystem being used
- If not, his attack is more difficult
- Attack model: specifies the information available to the adversary when he mounts his attack

Attack Models

• Ciphertext only attack:

- Oscar possesses a string of ciphertext y

• Known plaintext attack:

Oscar possesses a string of plaintext x and the corresponding ciphertext y

• Chosen plaintext attack:

- Oscar can temporarily use the encryption rule
- Chosen ciphertext attack:
 - Oscar can temporarily use the decryption rule
- \rightarrow **Objective:** Determine the key

Example

• The Shift cipher

Ciphertext:

jbcrclqrwcrvnbjenbwrwn

- Key 0: jbcrclqrwcrvnbjenbwrwn
- Key 1: iabqbkpqvbqumaidmavqvm
- Key 9: astitchintimesavesnine
- → plaintext: a stitch in time saves nine

Presentations

- Cryptanalysis of the Substitution Cipher
- Cryptanalysis of the Hill Cipher
- Cryptanalysis of the Vigenère Cipher

Takeaways

- What is cryptography
- Cryptosystems
- Cryptanalysis
- Some presentations