Co-funded by the Erasmus+ Programme of the European Union	

Cryptosystems

Truong Tuan Anh CSE-HCMUT
 anhtt@hcmut.edu.vn

In This Lecture

- Cryptography
- Cryptosystem: Definition
- Simple Cryptosystem
- Shift cipher
- Substitution cipher
- Affine cipher
- Cryptanalysis

Cryptography

Perfect Model

- Alice and Bob want to secretly communicate to each other

1. Two parties - Alice and Bob
2. Secure communication line
3. Send messages confidentially

Real Model

- Alice and Bob want to secretly communicate to each other

1. Many parties - Alice, Bob, Oscar, etc...
2. Insecure communication line
3. Send messages inconfidentially

The Fundamental Objective

- Alice and Bob communicate over an insecure channel
- Telephone line, computer network, etc...
\rightarrow Objective:
An adversary, called Oscar, cannot understand the conversation

Cryptography

- Cryptography is the science of using mathematics to encrypt and decrypt data
- Cryptography enables people to store sensitive information/data or transmit it across insecure networks so that no one can read it except the intended recipient

Basic Notations

- Plaintext: the information Alice wants to send to Bob and vice versa
- The structure is completely arbitrary: English text, numerical data, ...
- Ciphertext: encrypted plaintext using a predetermined key (encryption key)
- Decryption key: for decrypting ciphertext to plaintext

Basic Notations (cont.)

- Encryption rule (e):
- Input: plaintext and encryption key
- Output: corresponding ciphertext
- Decryption rule (d):
- Input: ciphertext and decryption key
- Output: corresponding plaintext

Communication Model

Assumptions

- Objective:

An adversary, called Oscar, cannot understand the message \mathbf{x}

- Assumptions:
- Oscar knows the rules e, d
- Oscar knows the message space/structure
- Oscar does not know keys used
\rightarrow Oscar wants to discover the keys

Cryptosystem

Definition

A Cryptosysytem/cipher is a five-tuple

$$
(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})
$$

where

- \mathcal{P} is a finite set of possible plaintexts;
- \mathcal{C} is a finite set of possible ciphertexts;
- \mathcal{K}, the keyspace, is a finite set of possible keys;

Cryptosystem: An Example

Cryptosystem: An Example (cont.)

- Alice and Bob choose the same random key K
- Alice wants to send message $x=x_{1} x_{2} \ldots x_{n}$
- Alice computes $y_{i}=e_{K}\left(x_{i}\right)$
- Alice sends $y=y_{1} y_{2} \ldots y_{n}$
- Bob receives y
- Bob decrypts $x_{i}=d_{k}\left(y_{i}\right)$
- Bob obtains the plaintext $x=x_{1} x_{2} \ldots x_{n}$

Note: Each encryption rule e_{k} must be one-to-one function

> Why?

Classification

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

Arithmetic Modulo

- Modular arithmetic:

$$
\begin{aligned}
& x=y \bmod m \text { iff } y=m^{*} k+x \text { and } 0 \leq x \leq m-1 \\
& x, y, m, k \text { are integer and } x \text { is non-negative }
\end{aligned}
$$

- Examples:
$155 \bmod 8=$?

Arithmetic Modulo

- Modular arithmetic:

$$
\begin{array}{r}
x=y \bmod m \text { iff } y=m^{*} k+x \text { and } 0 \leq x \leq m-1 \\
x, y, m, k \text { are integer and } x \text { is non-negative }
\end{array}
$$

- Examples:
$155 \bmod 8=3$
$155=19 * 8+3$

Arithmetic Modulo

- Modular arithmetic:

$$
\begin{aligned}
& x=y \bmod m \text { iff } y=m^{*} k+x \text { and } 0 \leq x \leq m-1 \\
& x, y, m, k \text { are integer and } x \text { is non-negative }
\end{aligned}
$$

- Examples:
-134 $\bmod 23$ = ?

Arithmetic Modulo

- Modular arithmetic:

$$
\begin{array}{r}
x=y \bmod m \text { iff } y=m^{*} k+x \text { and } 0 \leq x \leq m-1 \\
x, y, m, k \text { are integer and } x \text { is non-negative }
\end{array}
$$

- Examples:
-134 $\bmod 23=4$
$-134=(-6) * 23+4$

Arithmetic Modulo m in Z_{m}

- Z_{m} is the set $\{0,1, \ldots, m-1\}$
- Operations in Z_{m} : + and \mathbf{x}
- Work like real addition and multiplication, except the results are reduced to modulo m
- Examples:
$13 \times 15=13$ in Z_{26}
$21+134=$? in Z_{18}

The Shift Cipher: Definition

A Shift cipher is a five-tuple

$$
(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})
$$

where

- $\mathcal{P}=\mathcal{C}=\mathcal{K}=Z_{26}$;
- For each $0 \leq K \leq 25$:

$$
\begin{gathered}
e_{K}(x)=(x+K) \bmod 26 \text { and } d_{K}(y)=(y-K) \bmod 26 \\
\left(x, y \in Z_{26}\right)
\end{gathered}
$$

- Z_{26} : 26 English letters
- When $K=3$, it is the Caesar Cipher and used by Julius Caesar

The Shift Cipher: Example

A	B	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12

N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

The Shift Cipher: Example (cont.)

- Choose $K=13$
- The plaintext is weareatclass
\rightarrow Encrypt it using the Shift Cipher?
- Step 1: convert plaintext to integers

$$
\begin{array}{cccccccccccc}
w & e & a & r & e & a & t & c & c & a & s & s \\
22 & 4 & 0 & 17 & 4 & 0 & 19 & 2 & 11 & 0 & 18 & 18
\end{array}
$$

The Shift Cipher: Example (cont.)

- Step 2: use the encryption rule \mathbf{e}_{13} to add 13 to each integer and then reduce to modulo 26

22	4	0	17	4	0	19	2	11	0	18	18
13	13	13	13	13	13	13	13	13	13	13	13
9	17	13	4	17	13	6	15	24	13	5	5

- Step 3: convert to characters

$$
\begin{array}{cccccccccccc}
9 & 17 & 13 & 4 & 17 & 13 & 6 & 15 & 24 & 13 & 5 & 5 \\
j & r & n & e & r & n & g & p & y & n & f & f
\end{array}
$$

\rightarrow The ciphertext: jrnerngpynff
How to decrypt the ciphertext?

The Shift Cipher: Example (cont.)

- Choose $K=11$
- The ciphertext is hphtwwxppelextoytrse
\rightarrow Decrypt it using the Shift Cipher?

The Shift Cipher: Review

Not secure: keyspace is 26

- Exhaustive key search is feasible
- Example: jbcrc/qrwcrvnbjenbwrwn
- Key 0: jbcrc/qrwcrunbjenbwrwn
- Key 1: iabqbkpqvbqumaidmavqvm
- Key 9: astitchintimesavesnine
\rightarrow plaintext: a stitch in time saves nine
- To be secure
- The key space should be very large

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

The Substitution Cipher: Definition

A Substitution cipher is a five-tuple

$$
(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})
$$

where

- $\mathcal{P}=\mathcal{C}=Z_{26} ;$
- \mathcal{K} consists of all possible permutations of the 26 symbols $0,1, \ldots, 25$
- For each permutation $\pi \in \mathcal{K}$:

$$
e_{\pi}(x)=\pi(x) \quad \text { and } \quad d_{\pi}(y)=\pi^{-1}(y)
$$

($x, y \in Z_{26}$ and π^{-1} is the inverse pemutation to π)

The Substitution Cipher: Example

- Consider the following permutation

Plain	A	B	C	D	E	F	G	H	I	J	K	L	M
Cipher	W	H	O	V	I	B	P	L	C	J	Q	X	D
Plain	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Cipher	K	R	Y	E	S	Z	A	F	T	M	G	N	U

- Plaintext: attack at dawn
- Ciphertext: waa wo q wa vwmk

How to decrypt the ciphertext?

The Substitution Cipher: Example (cont.)

- Consider the following permutation

Plain	A	B	C	D	E	F	G	H	I	J	K	L	M
Cipher	W	H	O	V	I	B	P	L	C	J	Q	X	D
Plain	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Cipher	K	R	Y	E	S	Z	A	F	T	M	G	N	U

- Plaintext: we are studying cryptography
- Ciphertext: ?

The Substitution Cipher: Review

- 26! ~ 4*1028
\rightarrow Large enough
- An exhaustive key search is infeasible

Simple Cryptosystems

- Shift Cipher
- Substitution Cipher
- Affine Cipher
- Vigenère Cipher
- Hill Cipher

Why Affine?

- Affine functions:

$$
\begin{gathered}
e(x)=(a x+b) \bmod 26 \\
a, b \in Z_{26}
\end{gathered}
$$

- Suppose $e(x)=(4 x+7) \bmod 26$

$$
\begin{aligned}
& e(3)=? \\
& e(10)=? \\
& e(16)=?
\end{aligned}
$$

Why Affine?

- Affine functions:

$$
\begin{gathered}
e(x)=(a x+b) \bmod 26 \\
a, b \in Z_{26}
\end{gathered}
$$

- Suppose $e(x)=(4 x+7) \bmod 26$

$$
\begin{aligned}
& e(3)=19 \\
& e(10)=21 \\
& e(16)=19
\end{aligned}
$$

The Affine Cipher: Condition

- The affine functions have unique solution for every x iff

$$
\operatorname{gcd}(a, 26)=1
$$

gcd: the greatest common divisor

- Examples:

$$
\operatorname{gcd}(4,26)=2
$$

$\rightarrow e(x)$ is not a valid encryption function

$$
\operatorname{gcd}(7,26)=1
$$

$\rightarrow e(x)$ is a valid encryption function

Congruence

- a, b are integer; m is a positive integer $a \equiv b(\bmod m)$, called a congruence, if (a-b) divides m
- In other words:

$$
\boldsymbol{a} \equiv \boldsymbol{b}(\bmod m) \text { iff } a \bmod m=b \bmod m
$$

- Example: $105 \equiv 1(\bmod 26)$

$$
? \quad \equiv 8(\bmod 18)
$$

Multiplicative Inverse

- Suppose $a \in Z_{m}$
- The multiplicative inverse of a module m :
- denoted $a^{-1} \bmod m$
- is an element $a^{\prime} \in Z_{m}$ such that:

$$
a a^{\prime} \equiv a^{\prime} a \equiv 1(\bmod m)
$$

if m is fixed, we sometimes write a^{-1} for $a^{-1} \bmod m$

- Examples: in Z_{26}

$$
\begin{array}{r}
3^{-1}=? \\
17^{-1}=?
\end{array}
$$

The Affine Cipher: Definition

An Affine cipher is a five-tuple

$$
(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})
$$

where

- $\mathcal{P}=\mathcal{C}=Z_{26}$;
- $\mathcal{K}=\left\{(a, b) \in Z_{26} \times Z_{26}: \operatorname{gcd}(a, 26)=1\right\}$
- For each $K=(a, b) \in \mathcal{K}$:

$$
\begin{gathered}
e_{K}(x)=(a x+b) \bmod 26 \text { and } d_{K}(y)=a^{-1}(y-b) \bmod 26 \\
\left(x, y \in Z_{26}\right)
\end{gathered}
$$

The Affine Cipher: Example

- Suppose $K=(9,5)$ in Z_{26}

$$
e_{k}(x)=9 x+5
$$

Calculate the decryption rule:

$$
9^{-1}=?
$$

The Affine Cipher: Example

- Suppose $K=(9,5)$ in Z_{26}

$$
e_{k}(x)=9 x+5
$$

Calculate the decryption rule:

$$
\begin{gathered}
9^{-1}=3 \\
\rightarrow d_{k}(y)=3(y-5)=3 y-15
\end{gathered}
$$

- Now, let encrypt the plaintext $x=$ the weather is good
- Step 1: convert to integers

$$
19742240197417818614143
$$

The Affine Cipher: Example

- Step 2: encrypt integers using $e_{k}(x)$

| 19 | 7 | 4 | 22 | 4 | 0 | 19 | 7 | 4 | 17 | 8 | 18 | 6 | 14 | 14 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 16 | 15 | 21 | 15 | 5 | 20 | 16 | 15 | 2 | 25 | 11 | 7 | 1 | 1 | 6 |

- Step 3: convert to string
$u \quad q \quad p \quad v \quad p \quad f u \quad q \quad p \quad c \quad z \quad h \quad b \quad b \quad g$
\rightarrow Ciphertext: uqpvpfuqpczlhbbg
- Now, let decrypt the ciphertext axg with the key $K=$ $(7,3)$ in Z_{26} ?

The Affine Cipher: Review

- Key space?
- $\operatorname{gcd}(a, 26)=1$, so a must be $1,3,5,7,9,11$, $15,17,19,21,23,25$
- b can be any element in Z_{26}
\rightarrow too small to be secure

The Vigenère Cipher

The Vigenère Cipher: Definition

Let m be a positive integer. Define $\mathcal{P}=\mathcal{C}=\mathcal{K}=\left(\mathbb{Z}_{26}\right)^{m}$. For a key $K=\left(k_{1}, k_{2}, \ldots, k_{m}\right)$, we define

$$
e_{K}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(x_{1}+k_{1}, x_{2}+k_{2}, \ldots, x_{m}+k_{m}\right)
$$

$$
d_{K}\left(y_{1}, y_{2}, \ldots, y_{m}\right)=\left(y_{1}-k_{1}, y_{2}-k_{2}, \ldots, y_{m}-k_{m}\right)
$$

where all operations are performed in \mathbb{Z}_{26}.

Note: all the operations must be reduced to modulo 26

The Vigenère Cipher: Example

- Suppose $m=6$ and the keyword is cipher. So, the key $K=(2,8,15,7,4,17)$
- The plaintext is $x=$ itisveryhottoday
- How to encrypt it using the Vigenère Cipher?
- Step 1: convert the plaintext to integers 81981821417247141919143024

The Vigenère Cipher: Example

- Step 2: add the keyword then modulo 26

81981821417247141919143024
2815741728157417128157
10123252521196222123101611155

- Step 3: convert integers to string $k b x z z v t g w v x k q l p f$
\rightarrow Ciphertext: \quad kbxzzvtgwvxkqlpf

The Vigenère Cipher: Example

- Suppose $m=6$ and the keyword is cipher. So, the key $K=(2,8,15,7,4,17)$
- The ciphertext is $y=$ vpxzgiaxivwpubttmjpwizitwzt
- Let decrypt it using the Vigenère Cipher?
- The plaintext is $x=$
thiscryptosystemisnotsecure

The Vigenère Cipher: Review

- Key space?
- 26^{m} where m is the length of the keyword
- Exhaustive key search by hand is infeasible
- An alphabetic character can be mapped to one of m possible alphabetic characters
\rightarrow polyalphabetic cryptosystem

The Hill Cipher

Basic Linear Algebra

- Matrix $A: I^{*} m$

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)
$$

- Matrix product: $A B=\left(c_{i, k}\right)$
- $A=\left(a_{i, j}\right)$ is an $I^{*} m$ matrix and $B=\left(a_{j, k}\right)$ is an $m^{*} n$ matrix
- I*n matrix

$$
c_{i, k}=\sum_{j=1}^{m} a_{i, j} b_{j, k}
$$

- $(A B) C=A(B C)$ but not $A B=B A$
- Identity matrix I_{m} : $m^{*} m$ matrix with 1 's on the main diagonal and 0's elsewhere

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Basic Linear Algebra

- Inverse matrix of A : m * m
- A^{-1} such that $A A^{-1}=A^{-1} A=I_{m}$
- Not all matrices have inverse but if it is exists, it is unique
\rightarrow when a matrix has inverse?
- Determinant (det) of $A=\left(a_{i, j}\right)$, an $m^{*} m$ matrix
- Define $\mathrm{A}_{i, j}$ to be the matrix obtained from A by deleting the row ith and the column jth
- $m=1$: $\operatorname{det} A=a_{l, l}$
- $m>1$: choose i is any fixed integer between 1 to m

$$
\operatorname{det} A=\sum_{j=1}^{m}(-1)^{i+j} a_{i, j} \operatorname{det} A_{i j}
$$

Basic Linear Algebra

- $A=\left(a_{i, j}\right): \quad 2 * 2$ matrix
$\bullet \operatorname{det} A=a_{1,1} a_{2,2-} a_{1,2} a_{2,1}$
- $A=\left(a_{i, j}\right): \quad 3 * 3$ matrix
$\bullet \operatorname{det} A=a_{1,1} a_{2,2} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-\left(a_{1,1} a_{2,3} a_{3,2}+\right.$

$$
\left.a_{1,2} a_{2,1} a_{3,3}+a_{1,3} a_{2,2} a_{3,1}\right)
$$

- A simple case: suppose $A=\left(\begin{array}{ll}a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2}\end{array}\right)$ and A has inverse then

$$
A^{-1}=(\operatorname{det} A)^{-1}\left(\begin{array}{cc}
a_{2,2} & -a_{1,2} \\
-a_{2,1} & a_{1,1}
\end{array}\right)
$$

Important Condition

- When a matrix has inverse?
- A matrix A has inverse iff its det is non-zero
- A matrix A has inverse modulo 26 iff

$$
\operatorname{gcd}(\operatorname{det} A, 26)=1
$$

The Hill Cipher: Definition

Let $m \geq 2$ be an integer. Let $\mathcal{P}=\mathcal{C}=\left(\mathbb{Z}_{26}\right)^{m}$ and let

$$
\mathcal{K}=\left\{m \times m \text { invertible matrices over } \mathbb{Z}_{26}\right\}
$$

For a key K, we define

$$
e_{K}(x)=x K
$$

and

$$
d_{K}(y)=y K^{-1}
$$

where all operations are performed in \mathbb{Z}_{26}.

Note: all operation must be reduced to modulo 26

The Hill Cipher: Example

- Suppose the key $K=\left(\begin{array}{rr}13 & 9 \\ 6 & 8\end{array}\right)$
- The plaintext is $x=$ good
- How to encrypt it using the Hill Cipher?
- Encrypt is ok but not for decryption!!!

The Hill Cipher: Example

- Suppose the key $K=\left(\begin{array}{ll}11 & 8 \\ 12 & 9\end{array}\right)$
- The plaintext is $x=$ good
- How to encrypt it using the Hill Cipher?
- Encrypt and decrypt are ok!
- Step 1: convert to integers

$$
\begin{array}{llll}
\text { g o o o } \\
6 & 14 & 14 & 3
\end{array}
$$

The Hill Cipher: Example

- Step 2: Encrypt each block of two integers

$$
\left.\begin{array}{l}
\left.\begin{array}{lll}
\text { g o } \\
6 & 14 & (6
\end{array} 14\right)\left(\begin{array}{ll}
11 & 8 \\
12 & 9
\end{array}\right)=(66+168,48+126)=(0,18) \\
\text { o d } \\
14
\end{array} \quad \begin{array}{lll}
(14 & 3
\end{array}\right)\left(\begin{array}{ll}
11 & 8 \\
12 & 9
\end{array}\right)=(154+36,112+27)=(8,9) .
$$

- Step 3: convert each two-integer block to characters
- The ciphertext is $\mathrm{y}=a s i j$

The Hill Cipher: Example

How to decrypt?

- Compute K^{-1}
- $\operatorname{det} K=(11 * 9-12 * 8) \bmod 26=3$
- Using

$$
A^{-1}=(\operatorname{det} A)^{-1}\left(\begin{array}{rr}
a_{2,2} & -a_{1,2} \\
-a_{2,1} & a_{1,1}
\end{array}\right)
$$

$$
K^{-1}=(3)^{-1}\left(\begin{array}{cc}
9 & -8 \\
-12 & 11
\end{array}\right)=(9)\left(\begin{array}{cc}
9 & -8 \\
-12 & 11
\end{array}\right)=\left(\begin{array}{cc}
3 & 6 \\
22 & 21
\end{array}\right)
$$

The Hill Cipher: Example

How to decrypt?

- Decrypt each two-integer block of the ciphertext $y=$ asij

$$
\begin{array}{ll}
\begin{array}{ll}
\text { a s s } \\
0 & 18
\end{array} & \left(\begin{array}{ll}
0 & 18
\end{array}\right)\left(\begin{array}{ll}
3 & 6 \\
22 & 21
\end{array}\right)=(0+396,0+378)=(6,14) \\
\text { i j j } \\
8 & 9
\end{array} \quad\left(\begin{array}{ll}
8 & 9
\end{array}\right)\left(\begin{array}{ll}
3 & 6 \\
22 & 21
\end{array}\right)=(24+198,48+189)=(14,3) .
$$

- Plaintext $\mathrm{x}=$ good

The Hill Cipher: Example (cont.)

- Suppose the key $K=\left(\begin{array}{ll}11 & 8 \\ 12 & 9\end{array}\right)$
- The plaintext is $x=$ hello
- Let encrypt it using the Hill Cipher???
- Suppose the key $K=\left(\begin{array}{ll}11 & 8 \\ 3 & 7\end{array}\right)$
- The ciphertext is $y=$ delw
- Let decrypt it using the Hill Cipher???

The Hill Cipher: Review

- Key space?
- There are $26^{n^{2}}$ matrices of dimension $n \times n$
- $\log _{2}\left(26^{n^{2}}\right)$ is the upper bound on the key size

What else?

- The permutation cipher and
- The stream ciphers

Cryptanalysis

General Assumption

- Kerckhoffs' Principle: The opponent, namely Oscar, knows the cryptosystem being used
- If not, his attack is more difficult
- Attack model: specifies the information available to the adversary when he mounts his attack

Attack Models

- Ciphertext only attack:
- Oscar possesses a string of ciphertext y
- Known plaintext attack:
- Oscar possesses a string of plaintext x and the corresponding ciphertext y
- Chosen plaintext attack:
- Oscar can temporarily use the encryption rule
- Chosen ciphertext attack:
- Oscar can temporarily use the decryption rule
\rightarrow Objective: Determine the key

Example

- The Shift cipher

Ciphertext:
jbcrclqrwcrvnbjenbwrwn

- Key 0: jbcrclqrwcrvnbjenbwrwn
- Key 1: iabqbkpqvbqumaidmavqvm
- Key 9: astitchintimesavesnine
\rightarrow plaintext: a stitch in time saves nine

Presentations

- Cryptanalysis of the Substitution Cipher
- Cryptanalysis of the Hill Cipher
- Cryptanalysis of the Vigenère Cipher

Takeaways

- What is cryptography
- Cryptosystems
- Cryptanalysis
- Some presentations

